A New Sesquiterpene from the Alga Caloglossa Leprieurii

Xiao Hua XU*, Chang Jian LIN, Jian Hua LU, Guang Min YAO, Yan Ming LI

Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071

Abstract: A new bromo-sesquiterpene **1**, has been isolated from the alga *Caloglossa leprieurii* collected from the XiSha islands in south china sea. Its structure has been determined on the basis of spectral analysis, and The relative configuration of **1** was assigned on the basis of difference spectrum of NOE.

Keywords: Caloglossa leprieuriii, hydroclathrol, spectral analysis.

The alga *Caloglossa leprieurii* is a chinese traditional drug having been used as anthelmintic, from the alga *Caloglossa leprieurii*, we had isolated two novel metabolites and three known compounds¹⁻². Further efforts to study this genus systematically made us to obtain a novel bromo-sesquiterpene **1** from *Caloglossa leprieurii* collected from the XiSha islands in south China sea.

The EtOH extract of the alga *Caloglossa leprieuri* was partitioned between EtOAc and H_2O , and the resulted organic layer was eluted with EtOAc-hexane. The fracation (25:100) was purified by PTLC on a silica gel plate to yield compound 1(8mg).

compound 1

Compound **1**, colorless needle crystals, mp. 104-105°C, gave a pair of molecular ion peak at m/z: 316(24) and314(24) in a 1 : 1 ratio, which demonstrates that compound **1** contains one bromine atom, and its ¹³C-NMR DEPT spectrum was assigned to three methyls, four methenes, four methines and four quaternal carbons, corresponding to the molecular formula C₁₅H₂₃BrO₂, which required four degrees of the unsaturation. Its IR (KBr, v) 1669 cm⁻¹ and ¹H-NMR signals at δ 5.65(brs) supported the existence of one tri-substitute double bond, therefore, compound **1** must be a three cyclic compound. The IR spectra of **1** exhibiting an absorption band at 3420 cm⁻¹ indicated the presence of the hydroxyl group, and the significant ion m/z: 235 (M-Br)⁺, 217(M-Br-H₂O)⁺ and

^{*}E-mail: xxiaohua@public.tpt.tj.cn

Xiao Hua XU et al.

199(M-Br-2H₂O)⁺ also confirmed the existence of one bromine and two hydroxyl group. ¹H-NMR showed three methyl group signals at $\delta_{\rm H}$ (1.00, 1.12, 1.23), corresponding to 13-Me,14-Me,15-Me,respectively.threeseparated spin-systems "=CHCH(X)CH(X)="(a), "-CH₂CH₂-" (b), and "=CH(X)CH₂-" (c) were identified by means of ¹H-¹H COSY and ¹H-¹³C COSY spectra, X maybe is either a bromine or one hydroxyl group, furthermore it was found that the ¹³CNMR data of compound **1** are in good agreement with those of the known compound³⁻⁴, one bromine atom was assigned for C-8 position, and another two hydroxyl group for C-2 and C-9 position. Based on the HMBC correlations of compound **1**. It revealed the presence of the gemdimethylcyclohexane ring with vicinal hydroxy and bromine groups as the skeleton of some charmigrene sesquiterpenes⁵⁻⁷, and the partial structure "a-c" could be connected as structure **1** (see **Table** 1).

The relative configuration of **1** was assigned on the basis of NOE correlation between H-8, H-9 and H-15. The sterochemistry at C-2 and C-1 could be deduced from the NOE correlation between H-2 and H-15, and H-2and H-1.

Position	δ _C	δ_{H}	Key HMBC (C-H)
1	39.8		C-1, H-2, 3, 12, 13
2	72.1	4.21 (dd, 3.0,8.2Hz,1H)	
3	42.7	2.37 (dd,8.2,13.8Hz, 1H),1.90(dd,3.00,13.8Hz,1H)	
4	44.5		C-4, H-2,3,5,6,, 10,12
5	27.8	1.40(m, 1H), 1.22(m. 1H)	
6	32.7	1.3 (m, 2H)	
7	39.3		C-7,H-8,9,14,15
8	72.4	4.39(d,4.8,1H)	
9	66.8	4.08 (ddd,4.8,8.0,8.5Hz, 1H)	
10	35.4	2.94(dd, 8.5,17.0Hz , 1H), 2.84 (dd, 8.0,17.1Hz , 1H)	
11	139.3		C-11,H-3,5,9,10,12
12	130.1	5.64 (brs, 1H)	
13	26.9	1.00 (s,3H)	
14	22.7	1.12 (s, 3H)	
15	23.2	1.25 (s, 3H)	

Table 1NMR data of compound 1 (500 MHz, CDCl₃)

References

- 1. Xu XiaoHua, Su JingYu, Zeng LongMei, *Chemical Journal of Chinese Universities.*, **1998**, 19 (2), 249.
- XU Xiao Hua, Su JingYu, Zeng LongMei, Acta Scientiarum Naturalum Universitatis Sunyatsent, 1997, 36 (5), 117.
- 3. A. G. Gonzalez, J. D. Martin, V. S. Martin, R. T. B. Perez, J. Clardy, J. Chem. Soc., Chem. Commun., 1985, 260.
- 4. J. C. Coll, A. D. Wright, Aust. J. Chem., 1989, 42, 1591.
- 5. M. Suzuki, E. Kurosawa, *Tetrahedron Lett.*, **1978**, 4805.
- 6. M. Suzuki, A. Furusaki, N. Hashiba, and E. Kurosawa, Tetrahedron Lett., 1979, 879.
- 7. W. H. Gerwick, A. Lopez, R. Davila, J. Nat. Prod., 1987, 50, 1131.

Received 3 December, 2001